
6 Introduction to Digital Modulation

6.1. We now discuss the digital modulator-demodulator boxes shown in
Figure 11. The digital modulator serves as the interface to the physical
(analog) communication channel.Elements of digital commu. sys.
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Figure 11: Basic elements of a digital communication system

The mapping between the digital sequence (which we may assume to be
a binary sequence) and the (continuous-time) signal sequence to be trans-
mitted over the channel can be either memoryless or with memory, resulting
in memoryless modulation schemes and modulation schemes with memory.

Definition 6.2. In a memoryless modulation scheme, the binary se-
quence is parsed into blocks each of length b, and each block is mapped
into one of the sm(t), 1 ≤ m ≤ 2b, signals regardless of the previously
transmitted signals.

• This mapping from M = 2b messages to M possible signals is called
M-ary modulation.

• The digital modulator may simply map the binary digit 0 into a wave-
form s1(t) and the binary digit 1 into a waveform s2(t). In this manner,
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each bit from the channel encoder is transmitted separately.
We call this binary modulation.

• The waveforms sm(t) used to transmit information over the communi-
cation channel can be, in general, of any form. However, usually these
waveforms are bandpass signals which may differ in amplitude or phase
or frequency, or some combination of two or more signal parameters.

Definition 6.3. In a modulation scheme with memory, the mapping is from
the set of the current b bits and the past (L− 1)b bits to the set of possible
M = 2b messages.

• Modulation systems with memory are effectively represented by Markov
chains.

• The transmitted signal depends on the current b bits as well as the
most recent L− 1 blocks of b bits.

• This defines a finite-state machine with 2(L−l)b states.

• The mapping that defines the modulation scheme can be viewed as a
mapping from the current state and the current input of the modulator
to the set of output signals resulting in a new state of the modulator.

• Parameter L is called the constraint length of modulation.

• The case of L = 1 corresponds to a memoryless modulation scheme.

Definition 6.4. We assume that these signals (selected from the signal
collection {s1(t), s2(t), . . . , sM(t)} are transmitted at every Ts seconds.

• Ts is called the signaling interval.

• This means that in each second

Rs =
1

Ts

symbols are transmitted.
Parameter Rs is called the signaling rate or symbol rate.

Definition 6.5. The energy content of a signal sm(t) is denoted by Em. It
can be calculated from

Em =

∫ ∞
−∞
|sm(t)|2dt.

64



6.6. The average signal energy (per symbol) for the M -ary modulation
in Definition 6.2 is given by

Es =
M∑
m=1

pmEm

where pm indicates the probability of the mth signal (message probability).

• For equiprobable signals,

• If all signals have the same energy, then

◦ Em ≡ E for some E and

◦ Es = E.

Example 6.7. In (the digital version of) Pulse Amplitude Modulation
(PAM), the signal waveforms are of the form

sm(t) = Amp(t), 1 ≤ m ≤M (32)

where p(t) is a (common) pulse and A = {Am, 1 ≤ m ≤M} denotes the set
of M possible amplitudes.

• For example, the signal “amplitudes” Am may take the discrete values

Am = 2m− 1−M, m = 1, 2, . . . ,M

i.e., the “amplitudes” are ±1,±3,±5, . . . ,±(M − 1).

• The shape of p(t) influences the spectrum of the transmitted signal.

• The energy in signal sm(t) is given by

• For equiprobable signals,
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• Suppose M = 2 (binary modulation) and s1(t) = −s2(t). The two
signals have the same energy and a cross-correlation coefficient of -1.
Such signals are called antipodal. This case is sometimes called binary
antipodal signaling.

Example 6.8. In Amplitude-Shift Keying (ASK), the (common) pulse
p(t) in (32) for PAM is replaced by

p(t) = g(t) cos(2πfct).

where fc is the carrier frequency.

• Note that Ep =
Eg
2 .

6.9. The mapping or assignment of b (encoded) bits to the M = 2b possible
signals may be done in a number of ways. The preferred assignment is one
in which the adjacent signal amplitudes differ by one binary digit. This
mapping is called Gray coding.

• It is important in the demodulation of the signal because the most likely
errors caused by (additive white gaussian) noise involve the erroneous
selection of an adjacent amplitude to the transmitted signal amplitude.
In such a case, only a single bit error occurs in the b-bit sequence.

100 Digital Communications 

FIGURE 3.2-1 
0 1 
• • • Constellation for PAM signaling . 
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signal amplitudes differ by one binary digit as illustrated in Figure 3 .2-1. This mapping 
is called Gray coding. It is important in the demodulation of the signal because the most 
likely errors caused by noise involve the erroneous selection of an adjacent amplitude 
to the transmitted signal amplitude. In such a case, only a single bit error occurs in the 
k-bit sequence. 

We note that the Euclidean distance between any pair of signal points is 

(3.2-18) 

(3.2-19) 

(3.2-20) 

where the last relation corresponds to a bandpass PAM. For adjacent signal points 
I Am - An I = 2, and hence the minimum distance of the constellation is given by 

(3.2-21) 

We can express the minimum distance of an M-ary PAM system in terms of its ebavg 

by solving Equations 3.2-6 and 3.2-12 for [ P and eg, respectively, and substituting the 
result in Equation 3.2-21. The resulting expression is 

drmn = 
12log2 M & 
M2- 1 bavg (3.2-22) 

The carrier-modulated PAM signal represented by Equation 3.2-8 is a double­
sideband (DSB) signal and requires twice the channel bandwidth of the equivalent 
lowpass signal for transmission. Alternatively, we may use single-sideband (SSB) PAM, 
which has the representation (lower or upper sideband) 

Sm(t) = Re [Am (g(t) ± jg(t))ejZxfct], m = 1,2, ... ,M (3.2-23) 

Figure 12: Gray coding for PAM signaling
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6.10. In PAM (and ASK), we use just one pulse (sinusoidal pulse in the case
of ASK) and modify the amplitude of the pulse to create many waveforms
s1(t), s2(t), . . . sM(t) that we can use to transmit different block of bits. Next,
we would like to study the case where multiple shapes are used.

Example 6.11. For (baseband) binary (digital) modulation, we may use
the two waveforms s1(t) and s2(t) shown in Figure 13.178 Optimum receiver for binary data transmission�
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Graphically, the orthonormal basis functions φ1(t) and φ2(t) look as in Figure 5.5(b) and
the signal space is plotted in Figure 5.6. The distance between the two signals can be easily
computed as follows:

d21 =
√

E + E = √2E = √2
√

E. (5.35)

�

In comparing Examples 5.1 and 5.2 we observe that the energy per bit at the transmitter
or sending end is the same in each example. The signals in Example 5.2, however, are closer
together and therefore at the receiving end, in the presence of noise, we would expect more
difficulty in distinguishing which signal was sent. We shall see presently that this is the
case and quantitatively express this increased difficulty.

Example 5.3 This is a generalization of Examples 5.1 and 5.2. It is included princi-
pally to illustrate the geometrical representation of two signals. The signal set is shown

Figure 13: Signal set for Example 6.11.

Definition 6.12. The collection of all waveforms s1(t), s2(t), . . . , sM(t) used
in a particular digital modulation is called its signal set.

6.13. It is difficult to visualize, find relationship between, work with, or
perform analysis directly on waveforms. For example, when we have many
waveforms in the signal set, it is difficult to tell (by looking at their plots)
how easy it is for them to get corrupted by the noise process; that is, how
easy it is for one waveform to be interpreted as being another waveform at
the demodulator.

In the next sections, we will study how to represent waveforms in the
signal set as “equivalent” vectors (or points) in the signal space similar to
what we saw in Figure 12. Representing waveforms as points allows us to
look at them as a collection effectively.

6.14. A signal space is a vector space. So, we will first provide a review of
some concepts related to vector spaces.
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6.1 Vector Space and Inner Product Space in Cn (and Rn)

In linear algebra, an inner product space is a vector space15 with an addi-
tional structure called an inner product.

Definition 6.15. The inner product of two (potentially complex-valued)
n-dimensional vectors u and v is defined as

〈u,v〉 = vHu

where (·)H denotes the Hermitian transpose operator which performs
transposing operation and then conjugation.

6.16. Some properties of the inner product

• 〈u,v〉 = 〈v,u〉∗

• 〈u,v〉+ 〈v,u〉 = 2 Re {〈u,v〉} = 2 Re {〈v,u〉}.

Definition 6.17. Two vectors u and v are orthogonal if 〈u,v〉 = 0.
More generally, a set of N vectors v(k), 1 ≤ k ≤ N , are orthogonal if〈

v(i),v(j)
〉

= 0 for all 1 ≤ i, j ≤ N , and i 6= j.

Definition 6.18. The norm of a vector v is denoted by ‖v‖ and is defined
as

‖v‖ =
√
〈v,v〉

which in the n-dimensional Euclidean space is simply the length of the
vector.

Definition 6.19. A collection of vectors is said to be orthonormal if the
vectors are orthogonal and each vector has a unit norm.

6.20. Given two vectors u and v, we can decompose v into a sum of two
vectors, one a multiple of u and the other orthogonal to u.

(a) proju(v) = 〈v,u〉
〈u,u〉u is the orthogonal projection of v onto u.

(b) v − proju(v) is the component of v orthogonal to u.

15Recall that a vector space is a mathematical structure formed by a collection of elements called vectors,
which may be added together and multiplied (“scaled”) by numbers, called scalars in this context.

68





Example 6.21. Let v =

(
5
5

)
and u =

(
0
4

)
.

6.22. Suppose e is a unit vector; that is ‖e‖ = 1.

proje(v) =

Definition 6.23. When we have a list of vectors, we use superscripts in
parentheses as indices of vectors.

Example 6.24. Here is a list of four vectors:

v(1) =

1
1
0

 ,v(2) =

 1
−1
0

 ,v(3) =

 1
1
−1

 , and v(4) =

−1
−1
−1

 .

As usual, subscripts represent element indices inside individual vectors.
So, for the second vector, we have v

(2)
1 = 1, v

(2)
2 = −1, and v

(2)
3 = 0.

6.25. Any vector in a vector space may also be represented as a linear com-
bination of orthogonal unit vectors or an orthonormal basis

{
e(i), 1 ≤ i ≤ N

}
(for that vector space), i.e.,

v =
N∑
i=1

proje(i)(v) =
N∑
i=1

cie
(i)

where, by definition, a unit vector has length unity and ci is the projection
of the vector v onto the unit vector e(i), i.e.,

ci =
〈
v, e(i)

〉
.

69



Example 6.26. In many applications, the standard choice for the orthonor-
mal basis of a collection of (all possible real-valued) n-dimensional vectors
is

e(1) =


1
0
0
...
0

 , e(2) =


0
1
0
...
0

 , . . . , e(n) =


0
0
0
...
1

 .

6.27. Suppose we start with a collection of M n-dimensional vectors. Do
these M vectors really need to be represented in n dimensions?

Example 6.28. Figure 14a shows a particular collection of 10 vectors in 3-
D. When viewed from appropriate angle (as in Figure 14b), we can see that
they all reside on a 2-D plane. We only need a two-vector (orthonormal)
basis. All ten vectors can be represented as linear combinations of these two
vectors.
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Figure 14: Ten vectors on a plane

Example 6.29. Consider the four vectors below:

v(1) =

−2
−6
2

 ,v(2) =

−1
−3
1

 ,v(3) =

 1
3
−1

 , and v(4) =

 2
6
−2

 .

They are all multiples of one another.
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6.30. A sneak preview: Similar idea applies to waveforms. In PAM, we
have M waveforms that are simply multiples of a pulse p(t). Therefore, one
may represent them in one dimension as

6.31. Gram-Schmidt Orthogonalization Procedure (GSOP) for con-
structing a collection of orthonormal vectors from a set of n-dimensional
vectors v(i), 1 ≤ i ≤M .

(a) Arbitrarily select a (nonzero) vector from the set, say, v(1).
Let u(1) = v(1).
Normalize its length to obtain the first vector, say,

e(1) =
u(1)∥∥u(1)
∥∥ .

(b) Select an unselected vector from the set, say, v(2).
Subtract the projection of v(2) onto u(1):

u(2) = v(2) − proj u(1)

(
v(2)
)

= v(2) −
〈
v(2),u(1)

〉〈
u(1),u(1)

〉u(1)

= v(2) −
〈
v(2), e(1)

〉
e(1).

Then, we normalize the vector u(2) to unit length:

e(2) =
u(2)∥∥u(2)
∥∥ .

(c) Continue by selecting an unselected vector from the set, say, v(3)

and subtract the projections of v(3) into u(1) and u(2):

u(3) = v(3) − proj u(1)

(
v(3)
)
− proj u(2)

(
v(3)
)

= v(3) −
〈
v(3),u(1)

〉〈
u(1),u(1)

〉u(1) −
〈
v(3),u(2)

〉〈
u(2),u(2)

〉u(2)

= v(3) −
〈
v(3), e(1)

〉
e(1) −

〈
v(3), e(2)

〉
e(2).
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Then, we normalize the vector u(3) to unit length:

e(3) =
u(3)∥∥u(3)
∥∥ .

(d) Continue this procedure for each of the remaining unselected vectors.

Example 6.32. Consider the four vectors in Example 6.24:

v(1) =

1
1
0

 ,v(2) =

 1
−1
0

 ,v(3) =

 1
1
−1

 , and v(4) =

−1
−1
−1

 .

Use the Gram-Schmidt orthogonalization procedure (where the vectors are
applied in the order given) to find the orthonormal vectors e(1), e(2), . . .

that can be used to represent v(1), v(2), v(3), and v(4).
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6.33. What did we get from GSOP?

(a) A collection of N orthogonal vectors u(1), u(2), . . . , u(N) where

N ≤ min(M,n).

(i) We discard the zero u(k) in the collection.

(ii) The u(k) are re-indexed to replace the skipped values.

This is then normalized to be a collection of N orthonormal vectors
e(1), e(2), . . . , e(N).

(b) The collection e(1), e(2), . . . , e(N) forms an orthonormal basis for the
span of v(1), v(2), . . . , v(M).

Similarly, the collection u(1), u(2), . . . , u(N) forms an orthogonal basis
for the span of v(1), v(2), . . . , v(M).

(c) We can express v(j) as

v(j) =
N∑
i=1

proje(i)(v
(j)) =

N∑
i=1

ci,je
(i)

where ci,j =
〈
v(j), e(i)

〉
. Then, the vector c(j) = (c1,j, c2,j, . . . , cN,j)

T

gives the new coordinates of v(j) based on the orthonormal basis from
GSOP.

(d) In matrix form,

Therefore, if we define V =
[
v(1) v(2) · · · v(M)

]
, we have
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So, we can look at the equation V = EC as a decomposition of the
matrix V. Because the vectors in E are orthonormal, we have EHE = I.

Example 6.34. Use the orthonormal vectors from the Examples 6.32 to
construct the matrix E =

[
e(1) e(2) · · ·

]
. Find the (upper triangular) matrix

C such that V = EC where V =
[
v(1) v(2) v(3) v(4)

]
.

6.35. Important properties: the transformation from v(1), v(2), . . . , v(M)

to c(1), c(2), . . . , c(M) preserve many geometric quantities.

(a) Same inner product.

(b) Same norm.

(c) Same distance.
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